

La diagnosi energetica e gli interventi di riqualificazione degli edifici

I professionisti e le imprese a confronto

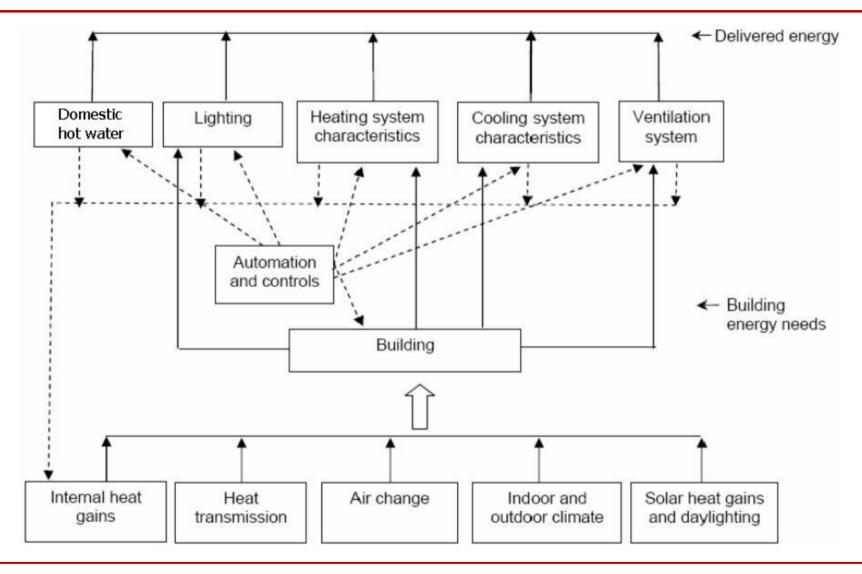
25-26 Novembre 2015 Pépinières d'entreprises ESPACE AOSTA

Prof. Ing. Daniele TESTI – BETTER (Building Energy Technique and Technology Research Group)

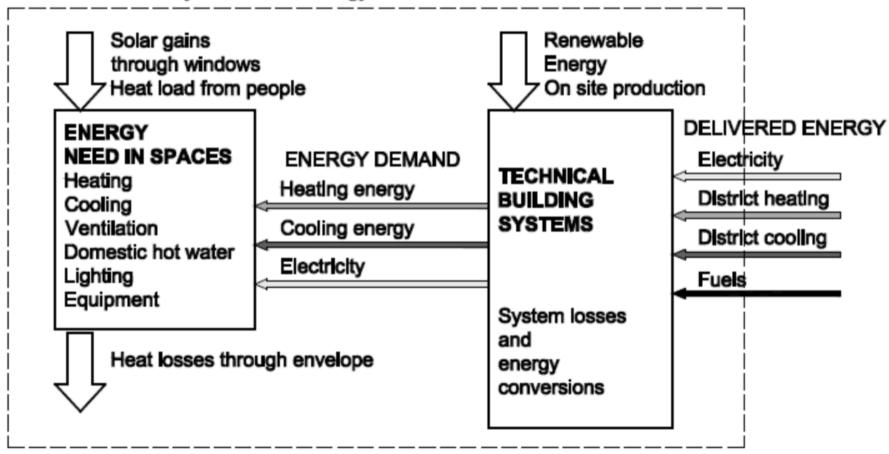
DESTEC (Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni)

Università di Pisa

Dai metodi di analisi dei dati, ai risultati e alla definizione degli interventi di riqualificazione energetica

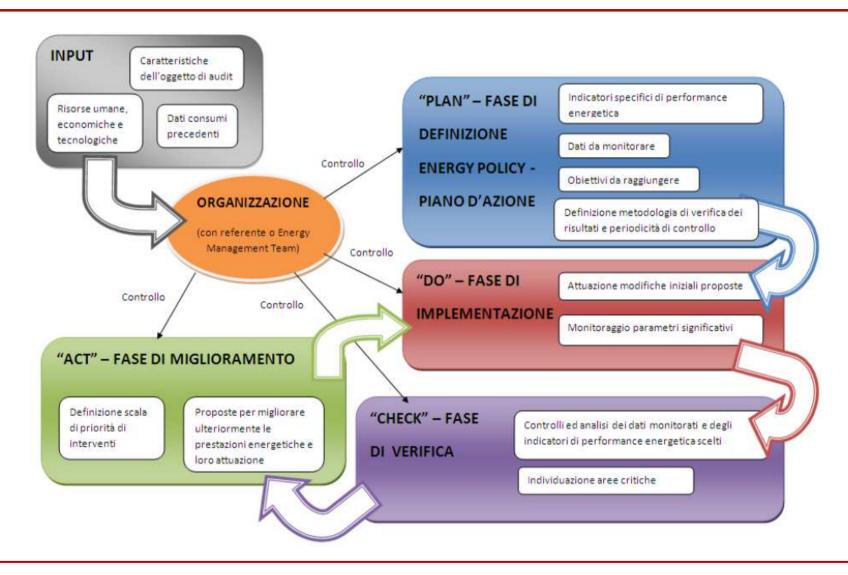


Il sistema edificio (clima, utenza, involucro, impianti)

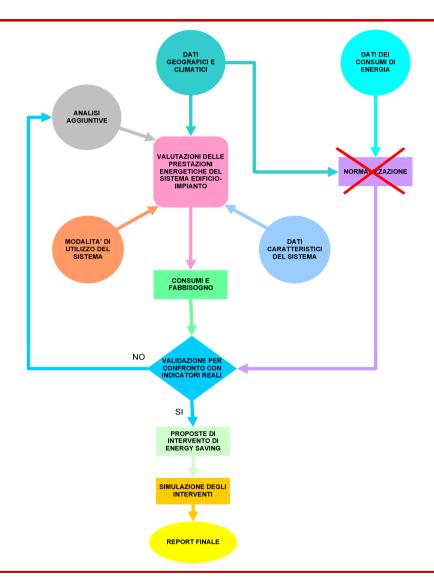


I flussi energetici di un edificio

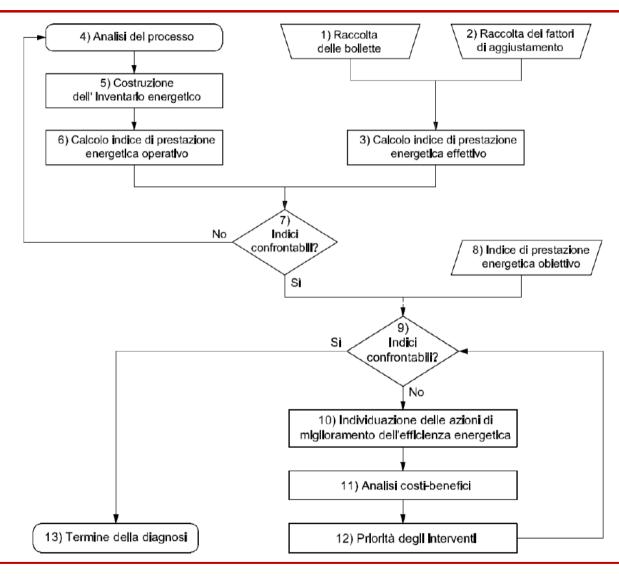
Boundary of delivered energy



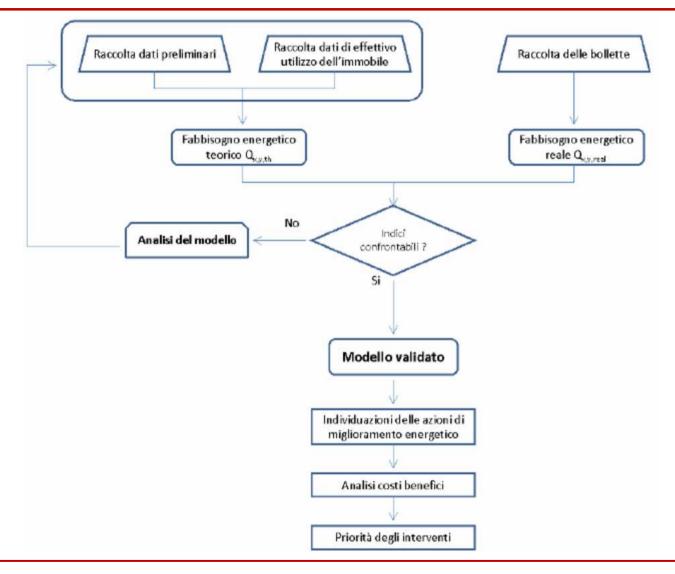
L'audit energetico nella politica di gestione dell'energia (ISO 50001)



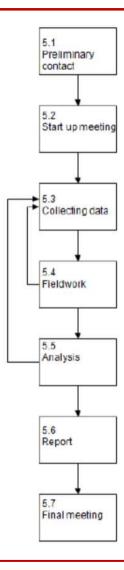
Il diagramma di flusso (Univ. Pisa-ENEA, 2010)



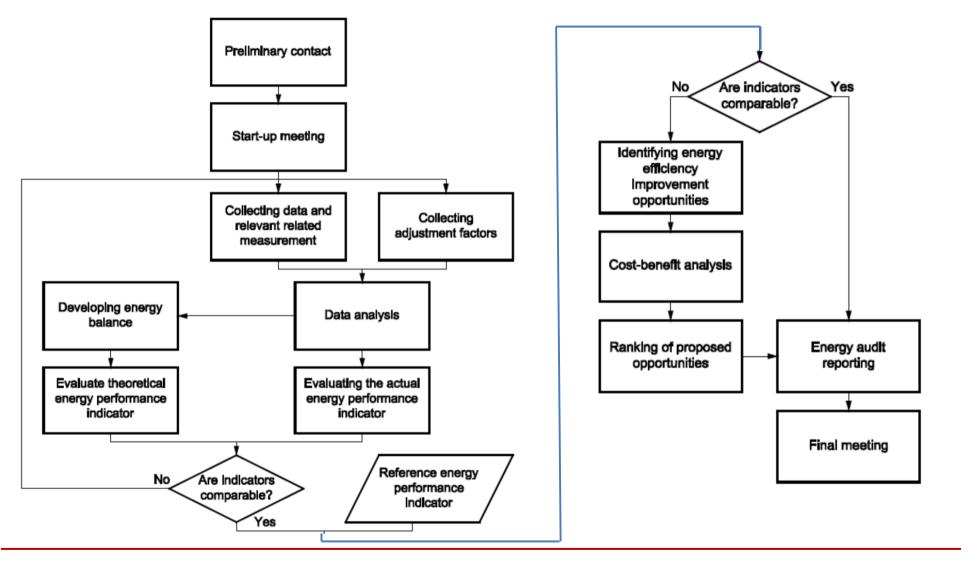
Il diagramma di flusso (UNI CEI/TR 11428:2011)



Il diagramma di flusso (Prov. Genova, 2013)



Il diagramma di flusso (EN 16247-2:2014)



Il diagramma di flusso (EN 16247-3:2014)

La procedura di diagnosi energetica (DE) in sintesi

PROCEDURA DI AUDIT

Prima fase: rilievo e acquisizione dei dati d'ingresso

- Rilevare i parametri significativi del sistema edificio-impianto da sopralluogo, progetto, intervista all'utenza (particolarmente dettagliata), misurazioni, schede tecniche, etc., ed identificarne il grado d'incertezza.
- Acquisire e analizzare i dati storici di fatturazione energetica.

Seconda fase: calcolo delle prestazioni energetiche di edificio e impianti

- Calcolare i fabbisogni energetici dell'involucro edilizio e gli utilizzi dei vettori energetici per i servizi di riscaldamento, raffrescamento, produzione di acqua calda sanitaria, ventilazione e trattamento dell'aria, cottura, illuminazione e altri usi elettrici e movimentazione di persone e merci.
- Calcolare l'energia prodotta da fonti rinnovabili (fotovoltaico, solare termico, biomasse, etc.).

La procedura di diagnosi energetica in sintesi

PROCEDURA DI AUDIT

Terza fase: confronto tra stime energetiche e consumi effettivi

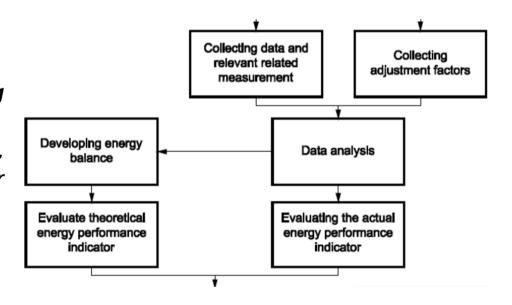
- Confrontare i risultati del calcolo coi consumi rilevati dalle fatturazioni energetiche.
- In caso di mancata corrispondenza, compiere una calibrazione sui dati d'ingresso più incerti.
- Eventualmente, valutare l'opportunità d'impiegare metodi più accurati di stima dei flussi energetici (campagne di misure e monitoraggio, simulazioni dinamiche del sistema), anche in funzione della categoria di edificio analizzata.

Quarta fase: analisi dei risultati e proposte di risparmio energetico

- Valutare i contratti di fornitura dell'energia.
- Individuare i sottosistemi in cui le energie disperse sono maggiori.
- Individuare le migliori modalità di conduzione e gestione dell'edificio.
- Valutare, da un punto di vista tecnico-economico, gli interventi di retrofit energetico, fornendo una scala di priorità.

I fattori di aggiustamento (adjustment factors)

Definizione secondo UNI CEI/TR 11428:2011


Grandezza quantificabile che influenza il consumo energetico utilizzata per normalizzare e confrontare in modo omogeneo i consumi, periodo per periodo.

Esempi: condizioni climatiche, condizioni ambientali (temperature di benessere, livello di illuminazione), grandezze correlate col comportamento e le attività degli utenti (turni di lavoro, livello di occupazione dei locali).

Definizione secondo EN 16247-1:2012

Quantifiable parameter affecting energy consumption.

Examples: weather conditions, behaviour-related parameters (indoor temperature, light level, working hours).

SIMULAZIONI di tipo 1) – Obiettivo: CALIBRAZIONE e VALIDAZIONE del MODELLO

Riproduzione dello storico misurato (e non "aggiustato"), anche breve, introducendo nel modello parametri riferiti esattamente a quel periodo

Esempio: se abbiamo 3 anni di fatturazioni energetiche, possiamo fare una media dei dati climatici e del comportamento dell'utenza in quegli anni oppure – scelta preferibile – possiamo eseguire 3 simulazioni, ognuna diversificata per anno, per migliorare il *tuning* dei parametri d'ingresso più incerti e ottenere così una validazione del modello su 3 "punti" di misura.

SIMULAZIONI di tipo 2) – Obiettivo: ottenere BASELINE di CONSUMI ENERGETICI

Simulazione dei fabbisogni energetici dell'edificio utilizzando dati climatici standard (statistici, TMY) e l'utenza attuale (oppure quella prevista per gli anni successivi)

Il sistema edificio viene simulato come inalterato rispetto allo stato attuale. Se si prevedono immediati cambi di gestione o nei comportamenti da parte dell'utenza oppure se sono in atto misure di riqualificazione energetica dell'involucro o degli impianti, è opportuno calcolare la *baseline a posteriori* rispetto a tali azioni.

SIMULAZIONI di tipo 3) – Obiettivo: valutare COSTI e BENEFICI degli interventi

Simulazione dei fabbisogni energetici dell'edificio utilizzando dati climatici standard e introducendo nel modello i parametri relativi agli interventi ipotizzati

Gli interventi di efficientamento energetico proposti possono essere analizzati singolarmente oppure combinandoli. Dal confronto con la *baseline* precedentemente calcolata, si possono eseguire le opportune analisi economiche di costi e benefici, che permetteranno di classificare gli interventi (e le loro combinazioni) in ordine di priorità.

Un esempio di *checklist* per il sopralluogo dell'*auditor*

Main item	Places to be visited	Check
The building envelope	Roof	
	Walls	
	Windows	
	Basement	
The heating system(s) and control	the boiler room	
	heat distribution rooms	
	distribution manifolds and channels	
The domestic hot water system(s) and control	the boiler room	
	storage	
	individual domestic	
The cooling system(s) and control	the chiller room or the roof where cooling equipment is located	
The ventilation and air conditioning system and control	mechanical rooms where air handling units are located	
	technical spaces	

Un esempio di *checklist* per il sopralluogo dell'*auditor*

Main item	Places to be visited	Check
The lighting system and control	sample rooms, by usage	
	common areas	
	external illuminated areas	
Domestic appliances	sample residential dwellings	
Office appliances	sample rooms, by usage	
	data centres	
Other appliances (e.g. medical,)		
Internal transport systems	elevators, escalators, moving walkways	
The building automation and control system (BACS)	electronic access	
Other energy using systems	Swimming pools	

Ai rilievi sul campo da parte dell'auditor vanno aggiunti questionari/interviste per i gestori dell'edificio e per gli utenti.

Gli indici di prestazione energetica operativi (EnPI)

SERVIZI ENERGETICI

Nell'ambito della diagnosi energetica degli edifici, nel caso più generale, i servizi che utilizzano energia da prendere in considerazione sono:

- a) riscaldamento
- b) raffrescamento
- c) produzione di acqua calda sanitaria (ACS)
- d) ventilazione e trattamento dell'aria
- e) illuminazione
- f) trasporto di persone o cose
- g) altre utenze elettriche
- h) usi di cottura

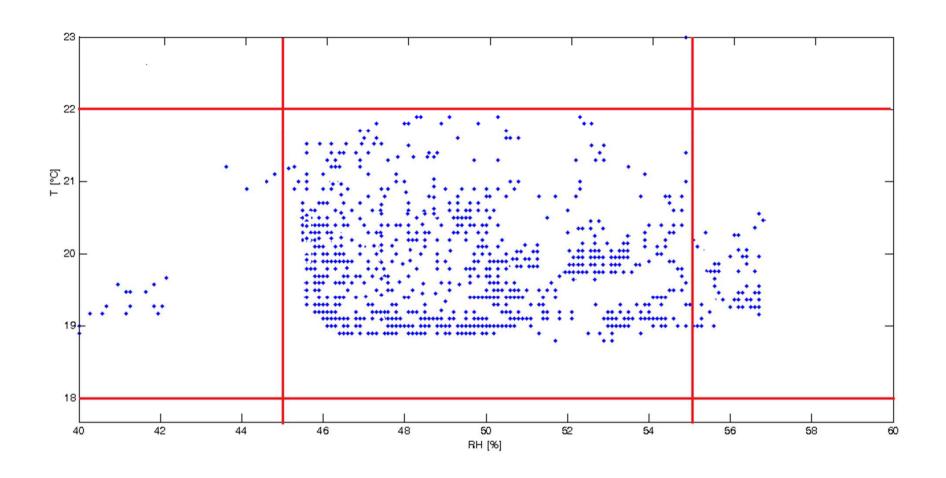
Per ciascuno di questi servizi, si può definire un **Indice di Prestazione Energetica Operativo** o *Energy Performance Indicator* (*EnPI*), misurabile, per esempio, in kWh per m³ di volume lordo climatizzato o kWh per m² di superficie calpestabile climatizzata.

Per le finalità della DE, e in particolare per la valutazione economica degli investimenti in azioni di efficientamento energetico, è comunque consigliabile utilizzare come principali *EnPI* i fabbisogni di **energia elettrica** e dei **combustibili**, tenendoli separati per vettore energetico (per valorizzare ciascuno col proprio prezzo).

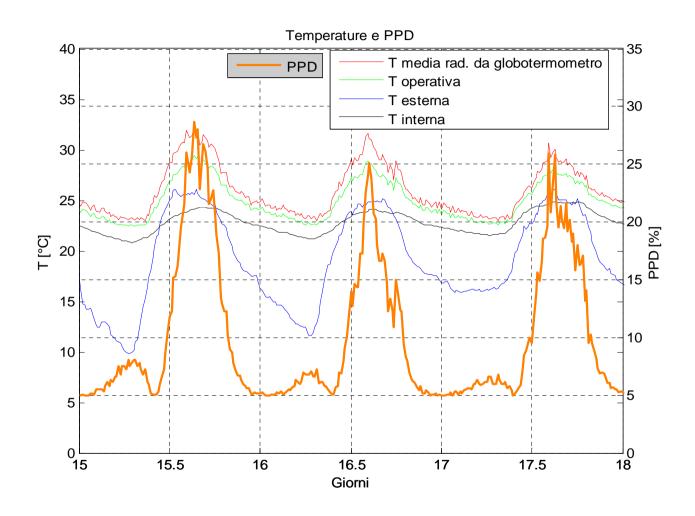
Il monitoraggio degli usi energetici

Il monitoraggio degli usi energetici (elettrici e termici) può essere utile:

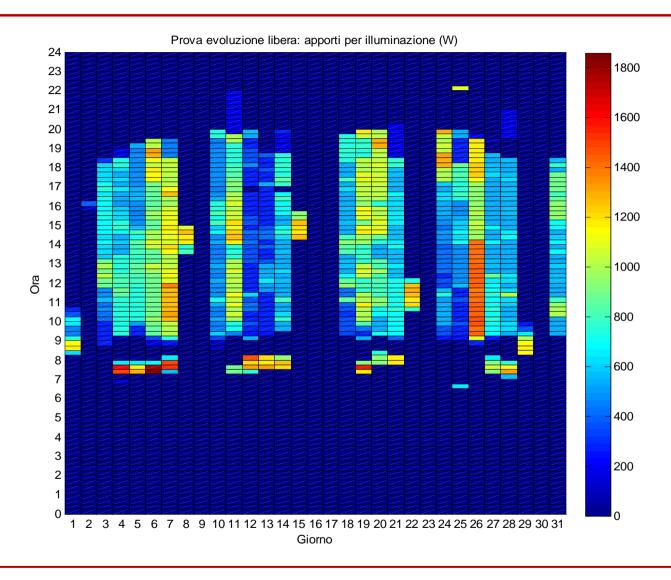
- in fase di analisi del sistema
 - per determinare i consumi effettivi
 - per migliorare il modello di simulazione
- dopo l'esecuzione degli interventi di efficientamento energetico
 - per verificare gli effettivi risparmi conseguiti
 - per migliorare la gestione del sistema



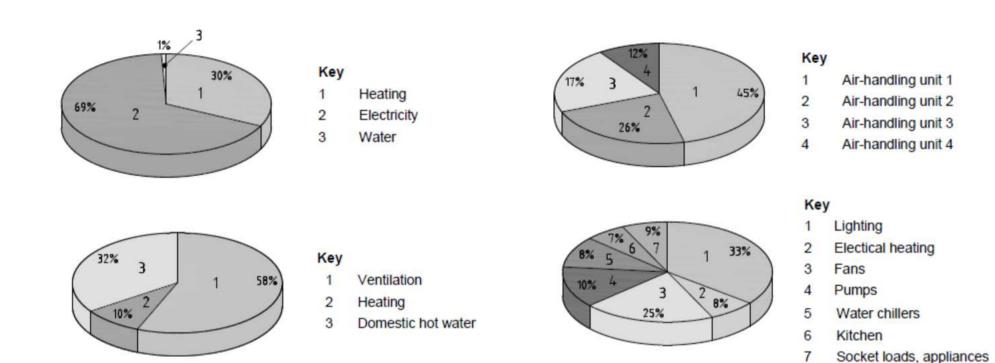
Esempi di monitoraggio: microclima e benessere termoigrometrico



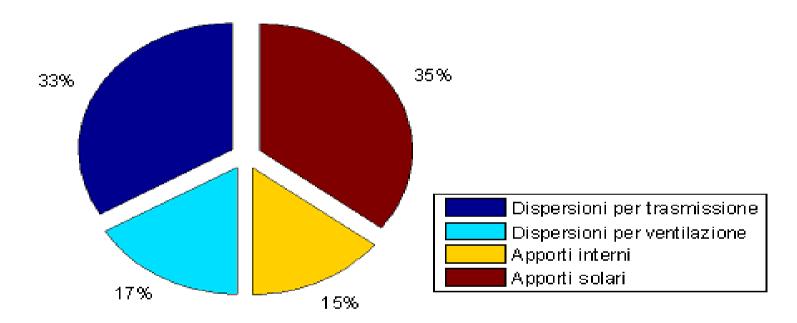
Esempi di monitoraggio: microclima e benessere termoigrometrico



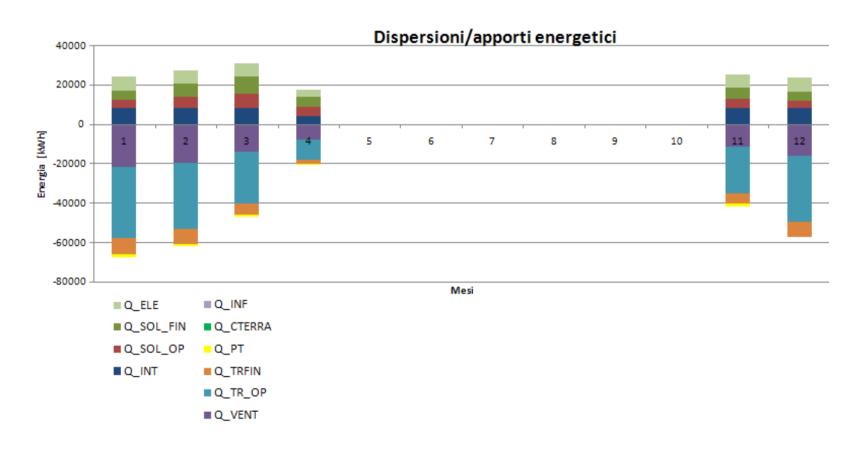
Esempi di monitoraggio: carpet plot



Un buon software di DE deve essere in grado di fornire, oltre agli EnPI, anche risultati intermedi in forma disaggregata, per facilitare l'individuazione delle criticità del sistema e guidare la scelta degli interventi di retrofit energetico.



BILANCIO ENERGETICO D'INVOLUCRO nel periodo di riscaldamento



BILANCIO ENERGETICO D'INVOLUCRO su base mensile

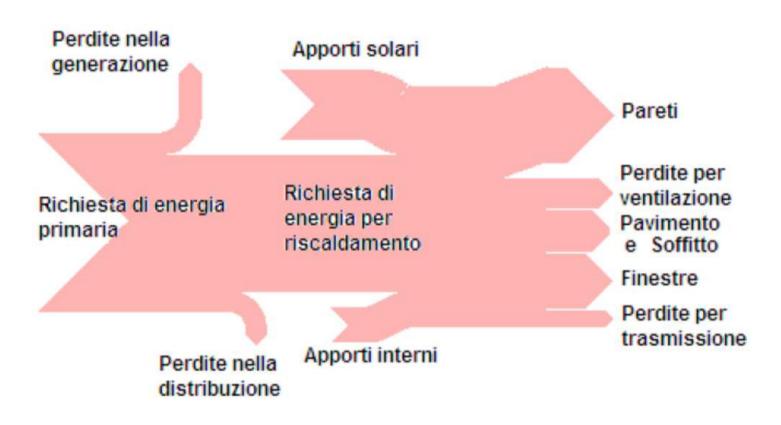
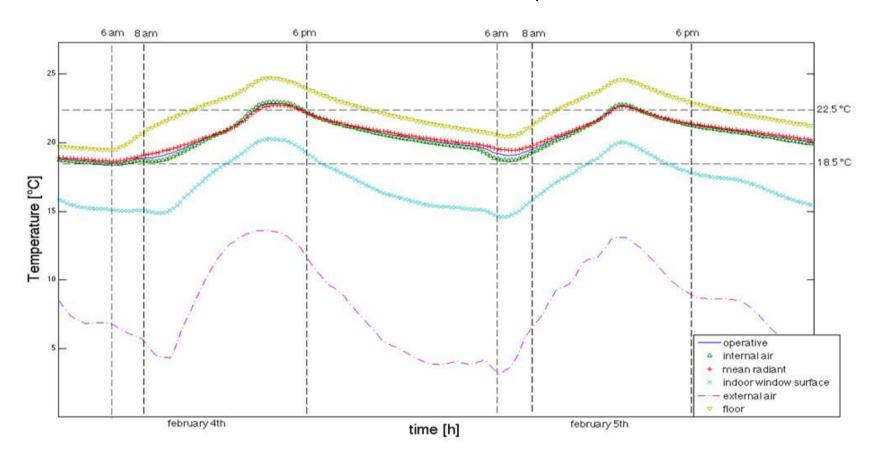


DIAGRAMMA DI SANKEY



SIMULAZIONE DINAMICA di un locale con pavimento radiante

L'individuazione delle azioni di efficientamento energetico

AMBITI D'INTERVENTO

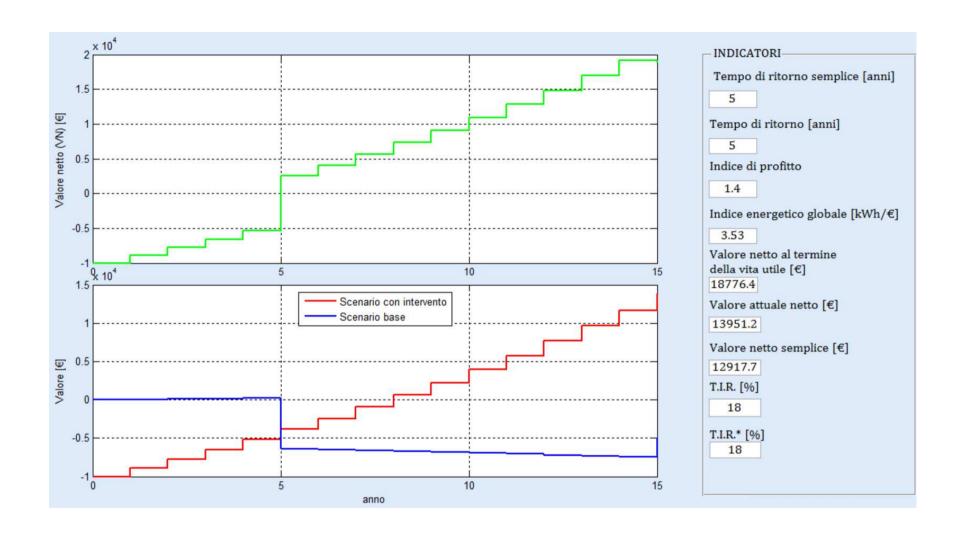
- Miglioramento nella gestione del sistema edificio-impianto
- Sensibilizzazione dell'utenza ad assumere comportamenti virtuosi
- Diminuzione dei fabbisogni di involucro per il periodo di riscaldamento (es.: limitazione dispersioni e perdite di ventilazione)
- Diminuzione dei fabbisogni di involucro per il periodo di raffrescamento (es.: limitazione carichi solari)
- Miglioramento dell'efficienza dell'impianto di climatizzazione invernale (es.: miglioramento efficienza sottosistemi)
- Miglioramento dell'efficienza dell'impianto di climatizzazione estivo
- Miglioramento dell'efficienza dell'impianto di produzione di ACS
- Miglioramento dell'efficienza dell'impianto di illuminazione
- Riduzione dei consumi per altre utenze termiche (es.: usi di cottura)
- Riduzione dei consumi per altre utenze elettriche (es.: elettrodomestici, apparecchiature da ufficio)
- Miglioramento dell'efficienza degli impianti di movimentazione di persone o cose
- Introduzione di impianti alimentati da fonti energetiche rinnovabili (FER) termiche (es.: generatori a biomasse, pompe di calore, solare termico)
- Introduzione di impianti alimentati da FER elettriche (es.: fotovoltaico, microturbine eoliche)

Main item	Typical energy saving measures	Check
The building envelope	improving U-values	
	improving air tightness	
	reducing thermal bridges	
	improving solar shading (cooling load reduction)	
	adjustable solar shading adoption (to adapt for different seasonal heating/cooling/lighting balance)	
	improving U-values	
The heating system(s) and control		
Room equipment	single room control available?	
	zoning according to use (implies distribution modifications).	
	avoid stratification in high ceiling rooms	
	avoid summer time heating	
	avoid simultaneous heating and cooling of the same space	
Distribution	zoning (is it possible to improve control with appropriate zoning?)	
	layout and location (external, unheated, heated)	
	control mode (constant flow/variable flow) and temperature regime	
	pumping energy optimisation	
	piping insulation (type, thickness)	

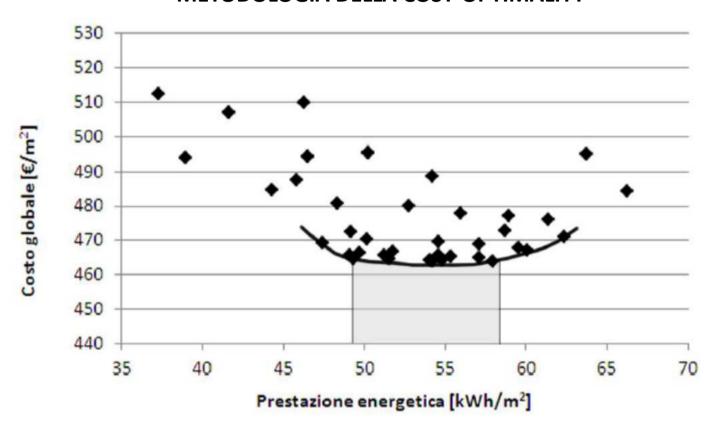
Main item	Typical energy saving measures	Check
Storage (if any)	dimensions	
	insulation	
	temperature regime	
Generation	select generator type according to available energy carrier and distribution temperature requirement	
	combustion or conversion efficiency improvement	
	temperature control of generation	
	appropriate capacity control	
The domestic hot water system(s) and	faucets and water flows (reduce needs)	
control	distribution: appropriate insulation	
	temperature regime of storage and distribution ring	
	generation source: generator type selection, thermal solar integration	
	local generation for small loads	
The cooling system(s) and control		
Room equipment	avoid simultaneous heating and cooling of the same space	
	suggest proper settings	
	introduce timing control or occupancy driven control	
Distribution	pumping auxiliary energy demand	
	control of temperatures: avoid mixing	

Main item	Typical energy saving measures	Check
Generation	chilled water / cooling production	
	winter time cooling / free cooling	
	temperature control of generation	
	appropriate capacity control	
Heat rejection	condenser water temperature	
	fan and pump energy	
The ventilation and air conditioning system and control	air flows	
	operation schedules/ventilation needs/demand based ventilation	
	air flow and temperature control	
	heat recovery	
	efficiency of heat recovery	
	fan electricity	
The lighting system and control	lamp types change to higher efficiency (lumen/W)	
	lighting levels (lux / W/m2)	
	lighting control / schedules	
	daylighting	
Domestic appliances	energy efficient equipment	
	stand-by mode	
	appropriate use	

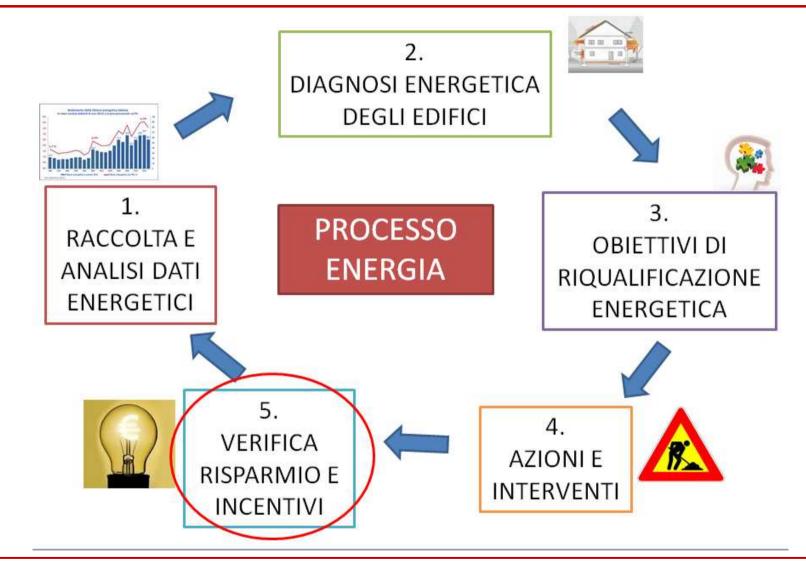
Main item	Typical energy saving measures	Check
Office appliances	energy efficient equipment	
	stand-by mode	
	appropriate use	
Internal transport systems	energy efficient equipment	
	demand-based operation	
The building automation and control	Improving energy saving functions of the BACS	
system (BACS)	appropriate settings and operation	
Other energy using systems		
Pool	pool covers	
	water / air temperature difference	
	heat recovery	
Kitchen	energy efficient equipment	
	stand-by mode	
	appropriate use	
Computer / server spaces	energy efficient equipment	
	stand-by mode	
	appropriate use	
Occupant behaviour	Change of occupant numbers or working patterns	
	Change behaviour	



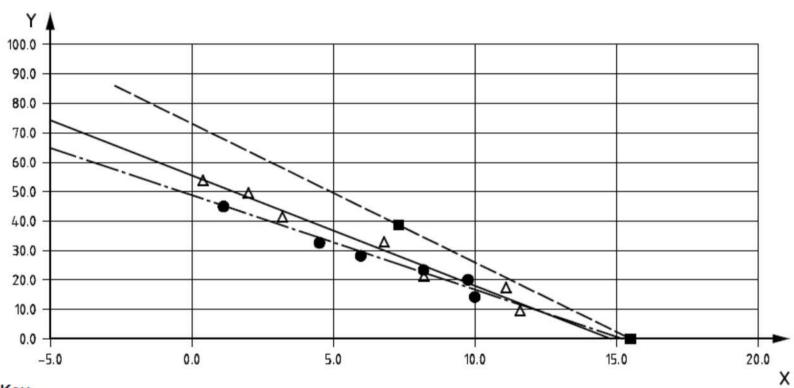
L'analisi economica degli interventi di efficientamento



METODOLOGIA DELLA COST-OPTIMALITY



La verifica del risparmio energetico conseguito



Il metodo della firma energetica (energy signature)

Key

- X External temperature (°C)
- Y Energy signature (kW)
- Before modification
- Design energy signature
- First year after modification

Il rapporto finale di diagnosi energetica

INDICE DI MASSIMA DEL REPORT DI DE

1) Introduzione

- Descrizione generale dell'attività di audit energetico
- Metodologia impiegata
- Riferimenti dell'auditor

2) Schema riassuntivo dei flussi energetici dell'edificio e degli interventi suggeriti

- Livelli attuali di consumo
- Principali misure di efficientamento
- Schema degli investimenti e dei relativi ritorni economici

3) Dati generali dell'edificio

- Informazioni sul sito
- Collegamento alle reti
- Storico dei consumi disponibile
- Descrizione dell'attuale gestione e manutenzione
- Descrizione dell'utenza

Il rapporto finale di diagnosi energetica

4) Audit del sistema edificio-impianti (stato attuale)

- Involucro
- Impianti termici (riscaldamento, raffrescamento, produzione di ACS, FER termiche)
- Impianti elettrici (illuminazione, altre utenze elettriche, cogeneratore, FER elettriche)
- Altri usi o sistemi (cottura, pompaggio, trattamento dell'aria, movimentazione)

5) Interventi di efficientamento energetico suggeriti

- Tariffe energetiche utilizzate
- Proposte sulla gestione dell'edificio
- Proposte per favorire comportamenti virtuosi da parte dell'utenza
- Proposte di efficientamento per l'involucro
- Proposte di efficientamento per gli impianti termici o introduzione di FER termiche
- Proposte di efficientamento per gli impianti elettrici o introduzione di FER elettriche

6) Appendici varie

- Documentazione fotografica
- Piante e prospetti
- Schede tecniche
- Schemi impiantistici
- Calcoli in dettaglio
- Riferimenti bibliografici

